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You have some weather/climate model that you want to improve
and some observations that might help you in some way. You might
want to. ..

Parameter estimation

Find what model parameter values are “best”, by some quantitative
metric (which is likely not perfect in some way or another)

Sensitivity analysis

Figure out which model parameters are the “most important”, i.e.
have the greatest effect on some quantities of interest

Uncertainty quantification

Get some measure for how bad your model is, or how little you
know about its parameter values
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Overarching question: what is the most probable set of parameter
values, given the information (theoretical, empirical, expert guess,
etc.) available? Combining information this way can be. ..

Express probabilistically

What is the probability of some parameter value x given some new
information (data) y, or... P(x|y)

Bayes' theorem

Plxly. A = LD e (1)

@ P(x|M) — prior PDF of control parameters
e P(y|x, M) — likelihood of observations given parameter values

o All probabilities are conditional on the choice of model M!



One can simply span the full parameter space and map out the
probability of all possibilities.

e.g. Lets say we have 5 data points and want to fit a Gaussian,
what is the probability of a particular choice of 1,07

¥ x
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Figure from MacKay (2005)



Set bounds and discretize space in i, o dimensions
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Calculate probability of parameters given data (shown via thickness
of lines, with very small probability not shown).
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Advantages:
@ Works for any distribution (no Gaussian assumption)
@ Easy to code

e Efficiency depends only on resolution and number of parameter
dimensions

Disadvantages
@ No clear way to efficiently/adequately span parameter space

@ Curse of dimensionality (cost increases with dimension as
(Nz)™)



Kalman Filter/Smoother
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Assuming all probabilities are Gaussian and your model is linear (i.e

can be expressed as a matrix), Bayes' theorem is trivial to solve:
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Assuming all probabilities are Gaussian and your model is linear (i.e.
can be expressed as a matrix), Bayes' theorem is trivial to solve:

x7 = x/ + P/HT(HP/HT + R)" [y - fo] ,

Where x¢ is the posterior mean, H is the model matrix, Pf is the
forecast covariance and R is the observational error covariance.
For nonlinear models, ensemble approximations of terms in the
Kalman filter are used, yielding the ensemble Kalman filter (EnKF)
For strongly nonlinear problems (most parameter estimation
problems), these approximations are really bad.
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We intelligently sample the parameter space:

@ Use a modified random walk (a Markov chain) to sample the
parameter space

e Random walk can be Gaussian or uniform (or anything else)

@ Each new sample depends only on the previous sample
(Markovian property).

@ Each new sample is accepted or rejected depending on
probabilities of prior/proposal:

P (Xprop|Xprior) = min|[1, P(Xprop)/ P(Xprior)]

The density of samples matches P(x|y, M)
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Markov chain example - the Metrog
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chain example - the Metrog

Acceptance probability = 0.70/0.63

Accepted!

Markov Chain
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chain example - thg Metrog
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Markov chain example - thg Metrog
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6th moment parameter
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Practical issues with MCM.C

@ No efficient way to
parallelize
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@ No efficient way to @ Relies on accurate prior and

parallelize observational uncertainty
@ Assessing convergence can @ Assumes that the parameters
be tricky of interest are the main

@ Requires zillions of samples source of uncertainty

(model integrations!)

The Bottom Line:

MCMC methods are great for tricky (strongly nonlinear,
multimodal, ill-posed) parameter estimation problems where model
integration is relatively cheap. Even then, they require care and
expert guidance (model/observation).



Simulated Annealing 1

For optimization problems, we can modify a MCMC sampler to
more efficiently find high-probability regions of the parameter space.
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For optimization problems, we can modify a MCMC sampler to
more efficiently find high-probability regions of the parameter space.

@ Perform MCMC walk, similarly to For example. ...
Metropolis sampling L

@ Scale the transition probability by a SR
“temperature” which decreases with i

sample size. T |
. " log(i +1)
@ This allows for bold transitions
when the sampler is “hot” and more
conservative transitions when the

sampler is “cold”
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Figure from MacKay [2005]

@ What if you can sample from
the conditional distribution?

@ Take turns sampling from
conditionals of each
dimension

@ Acceptance ratio = 1

(always!)

@ Freely available software

(BUGS) - Bayesian inference
Using Gibbs Sampling



6 6 6 6 6 6 o o o

Hamiltonian (hybrid) MCMC and No U-Turn Sampler
Affine-invariant MCMC (The MCMC Hammer)

Importance sampling

Slice sampler

Perfect sampler

Nested (& multimodal nested sampling)

MC methods for model comparison (estimation of ‘evidence')
Particle filter

Ensemble Kalman Filter



Surrogate techniques

.
s

.

What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?
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@ Emulate the response of
some model to perturbation

of parameters by nonlinear
regression

Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model

Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc.

What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

8
=53

about 500,000 samples



What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

o Emulate the response of ~
some model to perturbation
of parameters by nonlinear
regression

@ Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model

@ Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc. only 500 samples




What if the model is still too expensive, and you can only afford to

run it 1000, 500, or 100 times?

@ Emulate the response of
some model to perturbation
of parameters by nonlinear
regression

@ Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model

@ Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc.

Sim. Annealing: 500x 10 samples



Estimating Ice Microﬁ

Que et al JAMC 2016
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Estimating Ice Microphysics Parame
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More Ice Microphysics: Aggreg}éie
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S-band reflectivity (20,40 dBz), May 20 2011
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More Ice Microphysics:

Sticking efficiency and ice
property/PSD

Fwd-simulated Z, MDV profiles

S-band Obs (red) , MCMC posterior obs (grey), exp 3.04
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Cloud Property Retrieval u§ing Rad: _
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Thanks for listening!
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What is the likelihood?
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What is the likelihood?

Prly) = 22 2

Assuming Gaussian error in our observations, the likelihood is:
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What is the likelihood?

P(xly) =

P(x) -

(x) - P(y[x) -
P(y)

Assuming Gaussian error in our observations, the likelihood is:

P(ylx) = e,

(3)
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What is the likelihood?

_ P(x)- Plylx)
Assuming Gaussian error in our observations, the likelihood is:
) =R (3)
Puy = 5(F(X) =¥)TCTH(F(x) - y) (4)
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P(x) - P(y[x)

P(xly) = 2
(xly) = 5 @)
Assuming Gaussian error in our observations, the likelihood is:
P(ylx) = e, 3)
1 -
Bry = 5 (/) —y)TC (S () — ) *)

f(x) is result of propagating the control parameters x through the
forward model f.

y is the (true) observational vector.

C is the observation error covariance matrix.



Poorly tuned proposal distribution
can cause problems. Also, bad
choice of start position can be
problematic. x

o A: Good proposal variance

@ B: Proposal variance small,

started far from large PDF e
values i
o C: same as B, started within o
region of large PDF values oz

@ D: Same as B, adaptive

proposal variance
Figures from Posselt [2012]
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Time series of chain can show problematic autocorrelation due to
poorly chosen proposal and/or non-covergent sample.
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Figures from Posselt [2012]
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How does one avoid bad start
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@ Run many chains with
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How does one construct a good
proposal?
@ Prior knowledge
@ “Burn-in" phase where
proposal is actively tuned
o Adaptive Metropolis
(proposal variance constantly
tuned)
o Delayed Rejection (2nd
proposal after 1st)

How does one avoid bad start
position?
@ Prior knowledge
@ Run many chains with
random start positions

@ Run simulated annealing
“pre-sampler”



When do we stop our chain? How do we tell if we've converged to
the target PDF?

o If the target distribution is [EEEE JINEE JITNES

known, compare

@ Assess convergence of ’
running statistical moments ' ' '

o Kolmogorov-Smirnov test on

chain sub-samples * ‘ ' ‘ i
@ R-statistic — Gelman et al.
[1996]

o (Caveat: beware of
‘pseudo-convergence' |



R-Statistic — Gelman et al. [1996]

General idea:
@ Run many chains

@ Compute variance within
each chain (W)

o Compute mean of each chain

o Compare mean of
within-chain variances with
variance of all chain means

(B)

vart (x|y) = 71W oh lB
(5)
o foart (xly)
A=y ZTEY) (g



@ Monte Carlo methods can solve tough inference problems
using random numbers
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Monte Carlo methods can solve tough inference problems
using random numbers

Much cheaper than complete enumeration, especially as
dimensions increase

Robust, make no assumptions of model linearity or PDF
Gaussianity

Require many model integrations

o Often do not parallelize well

@ For more info see:

e Tarantola [2005]
o MacKay [2005]
o Robert and Casella
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